The split decomposition of a tridiagonal pair

نویسندگان

  • Kazumasa Nomura
  • Paul Terwilliger
چکیده

Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A∗ : V → V that satisfy (i)–(iv) below: (i) Each of A, A∗ is diagonalizable. (ii) There exists an ordering V0, V1, . . . , Vd of the eigenspaces of A such that A ∗Vi ⊆ Vi−1 + Vi + Vi+1 for 0 ≤ i ≤ d, where V−1 = 0, Vd+1 = 0. (iii) There exists an ordering V ∗ 0 , V ∗ 1 , . . . , V ∗ δ of the eigenspaces of A∗ such that AV ∗ i ⊆ V ∗ i−1 + V ∗ i + V ∗ i+1 for 0 ≤ i ≤ δ, where V ∗ −1 = 0, V ∗ δ+1 = 0. (iv) There is no subspace W of V such that both AW ⊆ W , A∗W ⊆ W , other than W = 0 and W = V . We call such a pair a tridiagonal pair on V . In this note we obtain two results. First, we show that each of A,A∗ is determined up to affine transformation by the Vi and V ∗ i . Secondly, we characterize the case in which the Vi and V ∗ i all have dimension one. We prove both results using a certain decomposition of V called the split decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting of Expanded Tridiagonal Matrices

The article addresses a regular splitting of tridiagonal matrices. The given tridiagonal matrix A is rst expanded to an equivalent matrix e A and then split as e A = B R for which B is block-diagonal and every eigenvalue of B R is zero, i.e., (M N) = 0. The optimal splitting technique is applicable to various algorithms that incorporate one-dimensional solves or their approximations. Examples c...

متن کامل

2 8 Ju n 20 04 Leonard pairs from 24 points of view ∗

Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy both conditions below: (i) There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A is irreducible tridiagonal. (ii) There exists a basis for V with respect to wh...

متن کامل

Some trace formulae involving the split sequences of a Leonard pair

Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A∗ : V → V that satisfy (i), (ii) below: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A∗ is diagonal. (ii) There exists a basis for V with respect to which ...

متن کامل

ul 2 00 3 Two linear transformations each tridiagonal with respect to an eigenbasis of the other ; an overview

Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A : V → V and A∗ : V → V that satisfy conditions (i), (ii) below. (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A∗ is diagonal. (ii) There exists a basis for V wit...

متن کامل

Banach Pair Frames

In this article, we consider pair frames in Banach spaces and   introduce Banach pair frames. Some various concepts in the frame theory such as frames, Schauder frames, Banach frames and atomic decompositions are considered as   special kinds of (Banach) pair frames.  Some frame-like inequalities  for (Banach)  pair frames are presented. The elements that participant  in the construction of (Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006